arm

Experiences with Cloud Native on the Edge for Smarter Cities

Arm Research

SMARTER

Eric Van Hensbergen, Alex Ferreira, Chris Adeniyi-Jones, Edmund Grimely-Evans, Josh Minor, Mark Nutter, Luis E. Peña, Vasileios Laganakos, Jon Hermes

Computing on the Edge with Kubernetes Conference – October 2020

俞

SMARTER

畾

4

 \star

Motivation: A trillion devices from edge to cloud

Vision: To enable an intelligent and secure world with a trillion connected devices

Significant R&D investment to build industry-leading IoT systems and cloud services

THE GLOBAL GOALS For Sustainable Development

https://globalgoals.org https://arm.com/company/sustainability/realizing-the-global-goals

World Population Trends

1750-2015 and projections until 2100

- Before 1800, world population growth rate < 1%
- In 20th century, annual growth rate peaked at 2.1% in 1962
- Since peaking, annual growth rate has gone down, with expected
 0.1% growth by 2100

Data sources: Up to 2015 OurWorkinData series based on UN and HYDE. Projections for 2015 to 2100; UN Fopulation Division[2015] – Medium Vanaut. Licensed under CC-BY-SA by the author Max Rose The data management of the source o

Source: Our World in Data

Urban Populations Trends By 2030, urban areas are projected to house **60**% of people globally

 The world's urban population is growing fastest in Asia and Africa

Energy Cities already consume **75**% of global energy resources and account for **80**% of emissions.

Source: <u>NASA Earth at Night</u> Arm Research – Software and Large Scale Systems

Water

Developed World

• Up to 20% of clean water lost due to leakage annually (\$27B)

Source: Northeast Group LLC

Developing World

Arm Research – Software and Large Scale Systems

Cape Town has

Infrastructure in

developing world

often does not exist

to water-borne

disease

WHO: Up to 4,000

people die every day

•

Smart City Objectives

"The effective integration of physical, digital and human systems in the built environment to deliver **sustainable, prosperous and inclusive future** for its citizens" – British Standards Institute

Smart Cities could deliver ...

If cities across the globe today were to universally adopt, and deploy, smart city technology and services, what would the benefits be for citizens?"

Time Given Back

Smart cities have the potential to 'give back' each city dweller 3 working weeks' worth of time every year.

How will This Time be Created?

15

DAYS

Mobility Saves 60 Hours

Smart Traffic Systems including dynamic traffic light phasing and smart parking reduce time in traffic. Open Data Platforms enable citizens to choose the fastest metro/bus lines.

Public Safety Saves 35 Hours

Machine learning enabled software such as PredPol used to predict crime spots on a given day. ITS here is used to prioritise emergency service vehicles through traffic light phasing & driver re-routing.

Healthcare Saves 9 Hours

Healthcare preventative apps & telehealth aim to reduce average physician visits by promoting better overall wellbeing. While improved administration and preliminary diagnosis reduce wait times.

Productivity Saves 21 Hours 100

Apps or digital services will simplify administrative processes when citizens interact with city agencies.

Benefits to Smart City Inhabitants

More Time for Family and Friends Enough time to enjoy a meal with friends or family twice a week.

Get Active

Exercise for 45 minutes 3 times a week every week of the year.

Take a Long Vacation

An additional 50% to the average annual US vacation allowance.

Improved Recovery

Studies have indicated that wounds take up to 25% longer to heal when individuals are chronically stressed. 110 million people die every year as a direct result of stress.

Decreased Risk of Depression

Lost productivity and medical expenses from depression costs over \$83 billion annually: \$11.30 for every person on the planet, every year.

Improved Earning Potential

The cost of stress can be high: if left unaddressed, it could mean that individuals' potential earnings fall by \$10,000

Al@Edge Building an open infrastructure for Edge-to-Cloud AI for society and infrastructure: health, quality of life, environmental protection, safety

Pete Beckman, Charlie Catlett, Nicola Ferrier, Rajesh Sankaran: Argonne National Laboratory

NSF SAGE

Base Type	Common Sensors (all nodes)
Air Quality	PM2.5, EPA criteria pollutants
	Meteorology, Light (ambient, IR,
Environment	UV), Sound (10 octaves), Vibration,
	Magnetic field
Imaging	HD sky, Ground cameras
Extensions	Capabilities & Features
HD Air Quality	Airquality, Meteorology, 3D wind,
	Rain sensor, IR camera
Seismic	Meteorology, Seismic, Vibration,
	HD cameras w/ 360° View
Sky	Meteorology, Wide angle HD sky
	cameras, Lightning sensor
Wildfire	Meteorology, Anemometer, Air-
	quality, HD cameras for 360° view
Listen AsT	Airquality, Meteorology, Sky and
Urban Ao1	street cameras, Microphone
Wildlife	Meteorology, Microphones, HD
Wildlife	cameras for 360° view
	Range- and time-resolved measure-
Doppler Lidar	ments for line-of-sight air velocity,
	attenuated aerosol backscatter
μ -Pulse Lidar	Altitude of clouds, detection of
	atmospheric aerosols
μ-Rain Radar	Measurement of rain rate, liquid
	water content and drop size
	distribution, near ground to 3000 m
Wind Profiler	Radar wind and precip profiles
	through the boundary layer
ETCE	Eddy covarariance turbulence
	exchange between soil, vegetation,
	and atmosphere

© Arm 2020

11

http://sagecontinuum.org/

Cloud Native Stacks

- Edge Solution Reference Implementations

https://arm.com/project-cassini

Arm Research – Software and Large Scale Systems

Cloud Native for the Edge

Base development environment on existing cloud-native methods, ecosystem, APIs, and tool chains.

Bring server-style modern application management, continuous integration and deployment to the edge.

Extend tools & technology where necessary to optimize for IoT and Edge and target widescale versus cluster deployment.

What's different on the Edge?

ለለለ

Different attack vectors require a more complete security model and potentially different approaches to securing multi-tenancy

More constrained node environments, limited virtualization for devices, with no ability to scaleout to other nodes in cluster

Different connectivity model, potentially unreliable, constrained metered bandwidth, and local-first service model

Physical sensors which must be allocated, multiplexed, secured, and managed – something that just doesn't happen in a cloud data center

Kubernetes – provisioning and orchestration

Edge Networking

IoT with Edge Compute

Device Management

AI Inference Serving

Adopt and extend cloud-native best practices to edge

Outcomes

I. Flexibly move AI Inference between cloud and edge

2. Efficiently share accelerators among edge applications

Extend dashboard for geographic and hierarchy

🙆 kubernetes		+ 🌲
Cluster Cluster Roles	Tree of test hierarchy	₹*
Namespaces Network Policies 34		
Nodes Selected nodes	pop-os	
Hierarchy Persistent Volumes		
Service Accounts 🛞 Storage Classes		
Workloads N	1	
Cron Jobs		
Daemon Sets		
Deployments		
Pods		
Replica Sets		
Replication Controllers		
Stateful Sets		
Service N		
Ingresses		
Services		
Config and Storage		
Config Maps		
DI HETTERTE 24777 NOT A		show all 🔍 🗙

Upcoming Work

Distributed Arm Compute for AI Inference

Long-term goals

- Realize this Distributed Compute System, that makes use of the available Arm IP, from the Edge to the Cloud.
 - Hardware-Software co-design.
 - Software implementation on existing hardware is the 1st step.
- Improve Arm IP and Arm Tooling.
 - Model Characterization help partners identify the right Arm IP.
 - Make it easy to develop for Arm high-performing Apps.
 - Increased focus on serverless / function as a service.
 - Optimize communication inside and outside node.
 - Expand intersection of project from A-class to also integrating Rclass and M-class systems.

For additional information....

- <u>http://getsmarter.io</u>
 - Example project contains cloud and client-side instructions to deploy pedestrian/car detector and audio classifier
- <u>Array of Things</u> and Waggle Platform (inspiration for base architecture and applications)
- <u>Arm Project Cassini</u>
- <u>Arm Pelion Edge</u>

SMARTER is an open-source reference, please comment, contribute, extend!

The Arm trademarks featured in this presentation are registered trademarks or trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere. All rights reserved. All other marks featured may be trademarks of their respective owners.

www.arm.com/company/policies/trademarks